

[^0]

\log
\qquad

Abstract

- \qquad \qquad \qquad \qquad \qquad

1	$\begin{aligned} & \frac{5}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} \\ & =\frac{5(2+\sqrt{3})}{4-3} \\ & =10+5 \sqrt{3} \end{aligned}$	A1 $\begin{array}{ll}\text { A1 } & 3 \\ & 3\end{array}$	$\begin{aligned} & \text { Multiply top and bottom by } \\ & \pm(2+\sqrt{3}) \\ & (2+\sqrt{3})(2-\sqrt{3})=1 \text { (may be implied) } \\ & 10+5 \sqrt{3} \end{aligned}$
$2(\mathrm{i})$ (ii)	$\begin{aligned} & 1 \\ & \frac{1}{2} \times 2^{4} \\ & =8 \end{aligned}$	$\begin{array}{ll} \text { B1 } & 1 \\ & 1 \\ \text { M1 } & \\ & \\ \text { M1 } & \\ & \\ \text { A1 } & 3 \\ & 4 \end{array}$	$2^{-1}=\frac{1}{2} \underline{\text { or }} 32^{\frac{1}{5}}=2 \underline{\text { or }} 2^{5}=32$ soi $32^{\frac{4}{5}}=2^{4}$ or 16 seen or implied 8
3(i)	$\begin{aligned} & 3 x-15 \leq 24 \\ & 3 x \leq 39 \\ & x \leq 13 \end{aligned}$ or $\begin{array}{ll} x-5 \leq 8 & \text { M1 } \\ x \leq 13 & \text { A1 } \end{array}$	M1 $\text { A1 } 2$	Attempt to simplify expression by multiplying out brackets $x \leq 13$ Attempt to simplify expression by dividing through by 3
(ii)	$\begin{aligned} 5 x^{2} & >80 \\ x^{2} & >16 \\ x & >4 \\ \text { or } x & <-4 \end{aligned}$	M1 B1 A1 3	Attempt to rearrange inequality or equation to combine the constant terms $x>4$ fully correct, not wrapped, not 'and' SR B1 for $x \geq 4, x \leq-4$

7(i)	$\frac{d y}{d x}=5$		
(ii)	$\begin{aligned} & y=2 x^{-2} \\ & \frac{d y}{d x}=-4 x^{-3} \end{aligned}$	B1 B1 B1 3	$\begin{aligned} & x^{-2} \text { soi } \\ & -4 x^{c} \\ & k x^{-3} \end{aligned}$
(iii)	$\begin{aligned} & y=10 x^{2}-14 x+5 x-7 \\ & y=10 x^{2}-9 x-7 \end{aligned}$	M1 A1	Expand the brackets to give an expression of form $a x^{2}+b x+c \quad(a \neq 0, b \neq 0, c \neq 0)$ Completely correct (allow $2 x$-terms)
	$\frac{d y}{d x}=20 x-9$	B1 ft B1 ft 4	1 term correctly differentiated Completely correct (2 terms)
8 (i)	$\frac{d y}{d x}=9-6 x-3 x^{2}$	*M1 A1	Attempt to differentiate y or $-y$ (at least one correct term) 3 correct terms
	At stationary points, $9-6 x-3 x^{2}=0$	M1	Use of $\frac{d y}{d x}=0$ (for y or $-y$)
	$\begin{aligned} & 3(3+x)(1-x)=0 \\ & x=-3 \text { or } x=1 \end{aligned}$	$\begin{aligned} & \text { DM1 } \\ & \text { A1 } \end{aligned}$	Correct method to solve 3 term quadratic $x=-3,1$
	$y=0,32$	A1ft 6	$y=0,32$ (1 correct pair www A1 A0)
(ii)	$\frac{d^{2} y}{d x^{2}}=-6 x-6$	M1	Looks at sign of $\frac{d^{2} y}{d x^{2}}$, derived correctly from $k \frac{d y}{d x}$, or other correct method
	When $x=-3, \frac{d^{2} y}{d x^{2}}>0$ When $x=1, \frac{d^{2} y}{d x^{2}}<0$	A1	$x=-3$ minimum $x=1$ maximum
(iii)	$-3<x<1$	M1 A1 2	Uses the x values of both turning points in inequality/inequalities Correct inequality or inequalities. Allow \leq
		11	

9 (i)	Gradient $=4$	B1	Gradient of 4 soi
	$y-7=4(x-2)$	M1	Attempts equation of straight line through $(2,7)$ with any gradient
	$y=4 x-1$	A1 3	
(ii)	$\begin{aligned} & \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\ & =\sqrt{\left(2-{ }^{-} 1\right)^{2}+\left(7-^{-} 2\right)^{2}} \end{aligned}$	M1	Use of correct formula for d or d^{2} (3 values correctly substituted)
	$\begin{aligned} & =\sqrt{3^{2}+9^{2}} \\ & =\sqrt{90} \end{aligned}$	A1	$\sqrt{3^{2}+9^{2}}$
	$=3 \sqrt{10}$	A1 3	Correct simplified surd
(iii)	Gradient of AB $=3$	B1	
	$\text { Gradient of perpendicular line }=-\frac{1}{3}$	B1 ft	SR Allow B1 for $-\frac{1}{4}$
	Midpoint of $\mathrm{AB}=\left(\frac{1}{2}, \frac{5}{2}\right)$	B1	
	$\begin{aligned} & y-\frac{5}{2}=-\frac{1}{3}\left(x-\frac{1}{2}\right) \\ & x+3 y-8=0 \end{aligned}$	M1 A1	Attempts equation of straight line through their midpoint with any non-zero gradient $y-\frac{5}{2}=\frac{-1}{3}\left(x-\frac{1}{2}\right)$
		A1 6	$x+3 y-8=0$
		12	

[^0]: Mark Scheme 4721
 January 2007 Mark Scheme 4721
 January 2007

